Buick Regal Owners & Service Manuals

Buick Regal: DTC P00EA-P00EC

Diagnostic Instructions

  • Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure.
  • Review Strategy Based Diagnosis for an overview of the diagnostic approach.
  • Diagnostic Procedure Instructions provides an overview of each diagnostic category.

DTC Descriptors

DTC P00EA

Intake Air Temperature (IAT) Sensor 3 Circuit Low Voltage

DTC P00EB

Intake Air Temperature (IAT) Sensor 3 Circuit High Voltage

DTC P00EC

Intake Air Temperature (IAT) Sensor 3 Circuit Erratic

Diagnostic Fault Information

IAT Sensor 3

Engine Controls and Fuel - 2.0L (LTG)

Typical Scan Tool Data

IAT Sensor 3

Engine Controls and Fuel - 2.0L (LTG)

Circuit/System Description

The intake air temperature (IAT) sensor 3 is a variable resistor that changes an engine control module (ECM) supplied 5 V signal. The signal varies with inlet air temperature and is displayed by the scan tool as ºC (ºF). The IAT sensor 3 is integrated with the B111B Turbocharger Boost/Intake Air Temperature sensor. The ECM provides a ground for the IAT sensor 3 low reference circuit.

IAT Sensor 3 - Temperature, Resistance, Voltage Table

Engine Controls and Fuel - 2.0L (LTG)

Conditions for Running the DTCs

P00EA, P00EB, and P00EC

  • The ignition is ON, or the engine is running.
  • The DTCs run continuously when the above conditions are met.

Conditions for Setting the DTC

P00EA

The ECM detects that the IAT sensor 3 signal is warmer than 149ºC (300ºF) for at least 5 s.

P00EB

The ECM detects that the IAT sensor 3 signal is colder than -60ºC (-76ºF) for at least 5 s.

NOTE: The scan tool display range is between -40 and +150ºC (-40 and +302ºF).

P00EC

The ECM detects that the IAT sensor 3 signal is intermittent or has abruptly changed for at least 5 s.

Action Taken When the DTCs Set

  • DTCs P00EA, P00EB, and P00EC are Type B DTCs.
  • The ECM commands the cooling fans ON.

Conditions for Clearing the DTCs

DTCs P00EA, P00EB, and P00EC are Type B DTCs.

Reference Information

Schematic Reference

Engine Controls Wiring Schematics (LTG)

Connector End View Reference

Component Connector End View Index

Electrical Information Reference

  • Circuit Testing
  • Connector Repairs
  • Testing for Intermittent Conditions and Poor Connections
  • Wiring Repairs

Powertrain Component Views

Powertrain Component Views

DTC Type Reference

Powertrain Diagnostic Trouble Code (DTC) Type Definitions

Scan Tool Reference

Control Module References for scan tool information

Circuit/System Verification

1. Ignition ON.

2. Verify that DTC P0641, P0651, P0697, or P06A3 is not set.

  • If any of the DTCs are set

Refer to Diagnostic Trouble Code (DTC) List - Vehicle for further diagnosis.

  • Go to next step: If none of the DTCs are set

NOTE: To minimize the effects of residual engine heat and sensor internal heating elements, perform Steps 3 and 4 of this verification procedure only if the ignition has been OFF for 8 hours or more.

3. Ignition ON.

4. Verify the following scan tool parameters are within 30ºC (54ºF) of each other.

  • Start-Up IAT Sensor 1
  • IAT Sensor 2
  • IAT Sensor 3
  • If not within 30ºC (54ºF)

Refer to Circuit/System Testing.

  • Go to next step: If within 30ºC (54ºF)

5. Engine idling, verify the following scan tool parameters are between: -38 and +149ºC (-36 and +300ºF).

  • IAT Sensor 1
  • IAT Sensor 2
  • IAT Sensor 3
  • If not between: -38 and +149ºC (-36 and +300ºF)

Refer to Circuit/System Testing.

  • Go to next step: If between: -38 and +149ºC (-36 and +300ºF)

6. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records data.

7. Verify the DTC does not set.

  • If the DTC sets

Refer to Circuit/System Testing.

  • Go to next step: If the DTC does not set

8. All OK

Circuit/System Testing

NOTE: You must perform the Circuit/System Verification before proceeding with Circuit/System Testing.

1. Ignition OFF, and all vehicle systems OFF, it may take up to 2 min. for all vehicle systems to power down. Disconnect the harness connector at the B111B Turbocharger Boost/Intake Air Temperature sensor.

2. Test for less than 2 Ω between the intake air temperature sensor 3 low reference circuit terminal 1 and ground.

  • If 2 Ω or greater
  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Test for less than 2 Ω in the low reference circuit end to end.
    • If 2 Ω or greater, repair the open or high resistance in the circuit.
    • If less than 2 Ω replace the K20 Engine Control Module.
  • Go to next step: If less than 2 Ω

3. Ignition ON, test for 4.8 - 5.2 V between the intake air temperature signal 3 signal circuit terminal 2 and ground.

  • If less than 4.8 V
  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Test for infinite resistance between the signal circuit and ground.
    • If less than infinite resistance, repair the short to ground on the circuit.
    • Go to next step: If infinite resistance
  3. Test for less than 2 Ω in the signal circuit end to end.
    • If 2 Ω or greater, repair the open/high resistance in the circuit.
    • If less than 2 Ω, replace the K20 Engine Control Module.
  • If greater than 5.2 V

NOTE: If the signal circuit is shorted to a voltage the engine control module or the sensor may be damaged.

  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Ignition ON, test for less than 1 V between the signal circuit and ground.
    • If 1 V or greater, repair the short to voltage on the circuit.
    • If less than 1 V, replace the K20 Engine Control Module.
  • Go to next step: If between 4.8 - 5.2 V

4. Ignition ON, verify the scan tool IAT Sensor 3 parameter is colder than -39ºC (-38ºF).

  • If warmer than -39ºC (-38ºF).
  1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
  2. Test for infinite resistance between the signal circuit terminal 2 and ground.
    • If less than infinite resistance, repair the short to ground on the circuit.
    • Go to next step: If infinite resistance
  3. Test for less than 2 Ω in the signal circuit end to end.
    • If 2 Ω or greater, repair the open/high resistance in the circuit.
    • If less than 2 Ω, replace the K20 Engine Control Module.
  • Go to next step: If colder than -39ºC (-38ºF).

5. Ignition OFF, install a 3 A fused jumper wire between the signal circuit terminal 2 and the low reference circuit terminal 1.

6. Verify the scan tool IAT Sensor 3 parameter is warmer than 148ºC (298ºF).

  • If colder than 148ºC (298ºF).
  1. Ignition OFF, remove the jumper wire, disconnect the harness connector at the K20 Engine Control Module, ignition ON.
  2. Test for less than 1 V between the signal circuit and ground.
    • If 1 V or greater, repair the short to voltage on the circuit.
    • Go to next step: If less than 1 V
  3. Ignition OFF.
  4. Test for less than 2 Ω in the signal circuit end to end.
    • If 2 Ω or greater, repair the open/high resistance in the circuit.
    • If less than 2 Ω, replace the K20 Engine Control Module.
  • Go to next step: If warmer than 148ºC (298ºF).

7. Test or replace the B111B Turbocharger Boost/Intake Air Temperature sensor.

Component Testing

Turbocharger Boost/Intake Air Temperature sensor

1. Ignition OFF, disconnect the harness connector at the B111B Turbocharger Boost/Intake Air Temperature sensor.

NOTE: A thermometer can be used to test the sensor off the vehicle.

2. Test the IAT sensor 3 by varying the sensor temperature while monitoring the sensor resistance.

Compare the readings with the Temperature Versus Resistance - Intake Air Temperature Sensor table for Delco sensors. The resistance values should be in range of the table values.

  • If not within the specified range.

Replace the B111B Turbocharger Boost/Intake Air Temperature sensor.

  • Go to next step: If within the specified range.

3. All OK

Repair Instructions

Perform the Diagnostic Repair Verification after completing the repair.

  • Intake Air Pressure and Temperature Sensor Replacement for B111B Turbocharger Boost/Intake Air Temperature sensor replacement
  • Control Module References for control module replacement, programming, and setup.

    READ NEXT:

     DTC P00F4-P00F6

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diag

     DTC P0101

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diag

     DTC P0102 or P0103

    Diagnostic Instructions Perform the Diagnostic System Check - Vehicle prior to using this diagnostic procedure. Review Strategy Based Diagnosis for an overview of the diagnostic approach. Diag

    SEE MORE:

     Fuel

    GM recommends the use of TOP TIER Detergent Gasoline to keep the engine cleaner and reduce engine deposits. See www.toptiergas.com for a list of TOP TIER Detergent Gasoline marketers and applicable countries. Do not use any fuel labeled E85 or FlexFuel. Do not use gasoline with ethanol levels great

     Radar Sensor Module - Long Range Learn

    NOTE: Adaptive Cruise Temporarily Unavailable service message may be displayed if this calibration procedure has to be performed. The radar may have become misaligned. After replacing and programming the Long Range Radar Sensor Module, it is necessary to perform a calibration procedure to align the

    © 2019-2024 Copyright www.buregal6.com