General Description
A crankcase ventilation system is used to consume crankcase vapors in the combustion process instead of venting them to atmosphere. Fresh air from the intake system is supplied to the crankcase, mixed with blow by gases and then passed through a calibrated orifice into the intake manifold.
Operation
The primary control is through the positive crankcase ventilation (PCV) valve (2) which meters the flow at a rate depending on intake manifold vacuum. The PCV valve is an integral part of the camshaft cover. Fresh air is introduced to the engine through PVC (1) under normal operating conditions. If abnormal operating conditions occur, the system is designed to allow excessive amounts of blow by gases to back flow through the crankcase vent valve (3) into the intake system to be consumed by normal combustion.
Only on turbocharged engines, there is a one way valve (2) in the camshaft cover in order to prevent the crankcase from being pressurized by positive pressure in the intake manifold when the turbocharger is in operation. When the turbocharger is operational, the pressure in the intake manifold can exceed atmospheric pressure which, without the one way valve, would force oil and PCV gases out of the camshaft cover and into the induction system, via the hose to the camshaft cover. This can cause coking of the throttle body and induction system, and can reduce the efficiency of both combustion and the intercooler system, in normal operation the PCV gases are drawn into the air stream post intercooler (6). However, when the turbo is spooled up the turbo can become the vacuum source for the vent system.
PVC#4 controls the max. flow so the crankcase stays at a normal vacuum during normal operating conditions.
Results of Incorrect Operation
A plugged orifice may cause the following conditions:
A leaking orifice may cause the following conditions: