Turbocharger Description and Operation
A turbocharger is a compressor that is used to increase the power output of an engine by increasing the mass of the oxygen and therefore the fuel entering the engine. A turbocharger is mounted either to the exhaust manifold or directly to the head. The turbine is driven by the energy generated by the flow of the exhaust gases. The turbine is connected by a shaft to the compressor which is mounted in the induction system of the engine. The centrifugal compressor blades compress the intake air above atmospheric pressure, thereby increasing the density of the air entering the engine.
The turbocharger incorporates a wastegate that is controlled by a pressure differential that is determined by the engine control module (ECM) by means of a PWM solenoid, in order to control boost pressure. A compressor recirculation valve, also controlled by the ECM, prevents compressor surging and damage by opening during sudden throttle closures. When the recirculation valve is opened it allows the air to recirculate back to the turbocharger compressor inlet.
The turbocharger is connected to the engine oiling system by a supply and drain pipe. Oil is required for the bearing system function and also serves to carry some heat from the turbocharger. There is a cooling system circuit in the turbocharger that further reduces operating temperatures and passively dissipates bearing housing heat away from the turbocharger on shut down.
Charge Air Cooler Description
The turbocharger engine system is supported by an air-to-air charge air cooler system, which uses fresh air drawn through a heat exchanger to reduce the temperature of the hot compressed air exiting the turbo compressor, prior to delivery to the engine combustion system. Inlet air temperature can be reduced by up to 100ºC (180ºF), enhancing performance because cooler air is denser in oxygen and promotes optimal combustion. The charge air cooler is connected to the turbocharger and to the throttle body by flexible ductwork that requires the use of special high torque fastening clamps. In order to prevent any type of air leak when servicing the ductwork, the tightening specifications, cleanliness and proper positioning of the clamps is critical, and must be strictly adhered to.
Benefits of Dual Cam Phasing
The camshafts of the Ecotec 2.0 liter turbocharged engine have camshaft position sensors and camshaft position actuators that the ECM uses to accurately control the continuously variable intake and exhaust valve timing. This allows the combustion process to be optimized by the ECM to increase the response of the turbocharger, providing a more immediate feeling of power to the driver.
Benefits of Gasoline Direct Injection
In the Ecotec 2.0 liter turbocharged engine, the fuel is introduced directly into the combustion chamber during the intake stroke. As the piston approaches top-dead center, the mixture is ignited by the spark plug, thereby giving the name spark ignition direct injection. Direct injection allows the mixture to be leaner, with less fuel and more air at full power, and allows a slightly higher compression ratio, resulting in improved fuel consumption at part and full throttle.
The fact that the fuel is injected after the exhaust valve closes allows particularly high valve overlap values in certain engine operating ranges. This enhances the turbocharger response time. This would not be possible in a port fuel injection engine due to the fact that unburned fuel would escape through the open exhaust valve.
Direct injection's precise fuel delivery enables more complete combustion which reduces emissions particularly on cold starts.
Electronic Vacuum Pump
The purpose of the electronic vacuum pump, if equipped, is to keep the vacuum in the brake booster at an acceptable level under various operating conditions. The ECM monitors the input signal from the brake booster pressure sensor.
When the vacuum in the brake booster is not in an acceptable range the control module will command the relay ON that controls the vacuum pump.
Recommendations for Service
The turbocharger is designed so that it does not require any special maintenance, and inspection is limited to a few periodic procedures. To ensure that the turbocharger's lifetime corresponds to that of the engine, the following engine manufacturer's service instructions must be strictly adhered to:
The following causes are responsible for a majority of all turbocharger failures:
These failures can be avoided by regular maintenance.